Characterization of nucleobase analogue FRET acceptor tCnitro.
نویسندگان
چکیده
The fluorescent nucleobase analogues of the tricyclic cytosine (tC) family, tC and tC(O), possess high fluorescence quantum yields and single fluorescence lifetimes, even after incorporation into double-stranded DNA, which make these base analogues particularly useful as fluorescence resonance energy transfer (FRET) probes. Recently, we reported the first all-nucleobase FRET pair consisting of tC(O) as the donor and the novel tC(nitro) as the acceptor. The rigid and well-defined position of this FRET pair inside the DNA double helix, and consequently excellent control of the orientation factor in the FRET efficiency, are very promising features for future studies of nucleic acid structures. Here, we provide the necessary spectroscopic and photophysical characterization of tC(nitro) needed in order to utilize this probe as a FRET acceptor in nucleic acids. The lowest energy absorption band from 375 to 525 nm is shown to be the result of a single in-plane polarized electronic transition oriented approximately 27 degrees from the molecular long axis. This band overlaps the emission bands of both tC and tC(O), and the Forster characteristics of these donor-acceptor pairs are calculated for double-stranded DNA scenarios. In addition, the UV-vis absorption of tC(nitro) is monitored in a broad pH range and the neutral form is found to be totally predominant under physiological conditions with a pK(a) of 11.1. The structure and electronic spectrum of tC(nitro) is further characterized by density functional theory calculations.
منابع مشابه
Fluorescent nucleobase analogues for base–base FRET in nucleic acids: synthesis, photophysics and applications
Förster resonance energy transfer (FRET) between a donor nucleobase analogue and an acceptor nucleobase analogue, base-base FRET, works as a spectroscopic ruler and protractor. With their firm stacking and ability to replace the natural nucleic acid bases inside the base-stack, base analogue donor and acceptor molecules complement external fluorophores like the Cy-, Alexa- and ATTO-dyes and ena...
متن کاملStudying Z-DNA and B- to Z-DNA transitions using a cytosine analogue FRET-pair
Herein, we report on the use of a tricyclic cytosine FRET pair, incorporated into DNA with different base pair separations, to study Z-DNA and B-Z DNA junctions. With its position inside the DNA structure, the FRET pair responds to a B- to Z-DNA transition with a distinct change in FRET efficiency for each donor/acceptor configuration allowing reliable structural probing. Moreover, we show how ...
متن کاملNucleic acid base analog FRET-pair facilitating detailed structural measurements in nucleic acid containing systems.
We present the first nucleobase analog fluorescence resonance energy transfer (FRET)-pair. The pair consists of tC(O), 1,3-diaza-2-oxophenoxazine, as an energy donor and the newly developed tC(nitro), 7-nitro-1,3-diaza-2-oxophenothiazine, as an energy acceptor. The FRET-pair successfully monitors distances covering up to more than one turn of the DNA duplex. Importantly, we show that the rigid ...
متن کاملPhotoinduced changes in hydrogen bonding patterns of 8-thiopurine nucleobase analogues in a DNA strand.
Hydrogen bonds (H-bonds) formed between nucleobases play an important role in the construction of various nucleic acid structures. The H-donor and H-acceptor pattern of a nucleobase is responsible for selective and correct base pair formation. Herein, we describe an 8-thioadenine nucleobase analogue and an 8-thiohypoxanthine nucleobase analogue with a photolabile 6-nitroveratryl (NV) group on t...
متن کاملCharacterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization.
Two-photon excitation fluorescence resonance energy transfer (2P-FRET) imaging microscopy can provide details of specific protein molecule interactions inside living cells. Fluorophore molecules used for 2P-FRET imaging have characteristic absorption and emission spectra that introduce spectral cross-talk (bleed-through) in the FRET signal that should be removed in the 2P-FRET images, to establ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 114 2 شماره
صفحات -
تاریخ انتشار 2010